4755 (FP1) Further Concepts for Advanced Mathematics

1	$\alpha \beta=(-3+\mathrm{j})(5-2 \mathrm{j})=-13+11 \mathrm{j}$ $\frac{\alpha}{\beta}=\frac{-3+\mathrm{j}}{5-2 \mathrm{j}}=\frac{(-3+\mathrm{j})(5+2 \mathrm{j})}{29}=\frac{-17}{29}-\frac{1}{29} \mathrm{j}$		Use of $j^{2}=-1$ Use of conjugate 29 in denominator All correct
2 (i) (ii)	$\mathbf{A B}$ is impossible $\begin{aligned} & \mathbf{C A}=(50) \\ & \mathbf{B}+\mathbf{D}=\left(\begin{array}{ll} 3 & 1 \\ 6 & -2 \end{array}\right) \\ & \mathbf{A C}=\left(\begin{array}{ccc} 20 & 4 & 32 \\ -10 & -2 & -16 \\ 20 & 4 & 32 \end{array}\right) \end{aligned}$ $\mathbf{D B}=\left(\begin{array}{cc} -2 & 0 \\ 4 & 1 \end{array}\right)\left(\begin{array}{cc} 5 & 1 \\ 2 & -3 \end{array}\right)=\left(\begin{array}{cc} -10 & -2 \\ 22 & 1 \end{array}\right)$	B1 B1 B1 B2 [5] M1 A1 [2]	-1 each error Attempt to multiply in correct order c.a.o.
3	$\begin{aligned} & \alpha+\beta+\gamma=a-d+a+a+d=\frac{12}{4} \Rightarrow a=1 \\ & (a-d) a(a+d)=\frac{3}{4} \Rightarrow d= \pm \frac{1}{2} \end{aligned}$ So the roots are $\frac{1}{2}, 1$ and $\frac{3}{2}$ $\alpha \beta+\alpha \gamma+\beta \gamma=\frac{k}{4}=\frac{11}{4} \Rightarrow k=11$	M1 A1 M1 A1 M1 A1 [6]	Valid attempt to use sum of roots $a=1$, c.a.o. Valid attempt to use product of roots All three roots Valid attempt to use $\alpha \beta+\alpha \gamma+\beta \gamma$, or to multiply out factors, or to substitute a root $k=11 \text { c.a.o. }$

4	$\begin{aligned} & \mathbf{M M}^{-1}=\frac{1}{k}\left(\begin{array}{ccc} 4 & 0 & 1 \\ -6 & 1 & 1 \\ 5 & 2 & 5 \end{array}\right)\left(\begin{array}{ccc} -3 & -2 & 1 \\ -35 & -15 & 10 \\ 17 & 8 & -4 \end{array}\right) . \\ & =\frac{1}{k}\left(\begin{array}{lll} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{array}\right) \Rightarrow k=5 \\ & \left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\frac{1}{5}\left(\begin{array}{ccc} -3 & -2 & 1 \\ -35 & -15 & 10 \\ 17 & 8 & -4 \end{array}\right)\left(\begin{array}{c} 9 \\ 32 \\ 81 \end{array}\right) \\ & \frac{1}{5}\left(\begin{array}{ccc} -3 & -2 & 1 \\ -35 & -15 & 10 \\ 17 & 8 & -4 \end{array}\right)\left(\begin{array}{c} 9 \\ 32 \\ 81 \end{array}\right)=\frac{1}{5}\left(\begin{array}{c} -10 \\ 15 \\ 85 \end{array}\right) \\ & \Rightarrow x=-2, y=3, z=17 \end{aligned}$	M1 A1 [2] M1 M1 A1 A1 [4]	Attempt to consider $\mathbf{M M}^{-1}$ or $\mathbf{M}^{-1} \mathbf{M}$ (may be implied) c.a.o. Attempt to pre-multiply by \mathbf{M}^{-1} Attempt to multiply matrices Correct All 3 correct s.c. B1 if matrices not used
5	$\begin{aligned} & \sum_{r=1}^{n}(r+2)(r-3)=\sum_{r=1}^{n}\left(r^{2}-r-6\right) \\ & =\sum_{r=1}^{n} r^{2}-\sum_{r=1}^{n} r-6 n \\ & =\frac{1}{6} n(n+1)(2 n+1)-\frac{1}{2} n(n+1)-6 n \\ & =\frac{1}{6} n[(n+1)(2 n+1)-3(n+1)-36] \\ & =\frac{1}{6} n\left(2 n^{2}-38\right)=\frac{1}{3} n\left(n^{2}-19\right) \end{aligned}$	M1 A2 M1 A1 A1 [6]	Separate into 3 sums -1 each error Valid attempt to factorise (with n as a factor) Correct expression c.a.o. Complete, convincing argument
6	$\begin{aligned} & \text { When } n=1, \frac{n(n+1)(n+2)}{3}=2, \\ & \text { so true for } n=1 \\ & \text { Assume true for } n=k \\ & 2+6+\ldots . .+k(k+1)=\frac{k(k+1)(k+2)}{3} \\ & \Rightarrow 2+6+\ldots . .+(k+1)(k+2) \\ & =\frac{k(k+1)(k+2)}{3}+(k+1)(k+2) \\ & =\frac{1}{3}(k+1)(k+2)(k+3) \\ & =\frac{(k+1)((k+1)+1)((k+1)+2)}{3} \end{aligned}$ But this is the given result with $k+1$ replacing k. Therefore if it is true for $n=k$ it is true for $n=k+1$. Since it is true for $n=1$, it is true for $n=1,2,3$ and so true for all positive integers.	B1 E1 M1 A1 E1 E1 [6]	Assume true for k Add $(k+1)$ th term to both sides c.a.o. with correct simplification Dependent on A1 and previous E1 Dependent on B1 and previous E1

